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We assume rail and wheel to be undeformable bodies. The motion is de-
scribed by 6 variables. We postulate the existence of al least one contact
point at each instant, thus introducing a nonsmooth constraint manifold.
We study jump conditions for trajectories crossing the simgularities in
the constraint on the basis of a geometrical regularization. Numerical
solutions for a wheel-set are presented.

1. Introduction

There exists a wide variety of models which describe. on different levels
of resolution. the motion of railway vehicles (cf e.g., Dang van Ky (1994):
Frischmuth et al. (1994); Netter and Arnold (1993)). Simple models consider
just a concentrated force moving along an elastic beam. more complicated ones
use the Finite Element Method for solution of impulse and energy equations
in the contact zone between wheels and rails.

For certain applications — especially within simulation packages — the em-
phasis is placed mainly on the rigid body components of the motion. On the
other hand, sufficient speed for on-line calculations is required. For this rea-
son there are attempts to treat rail-wheel problems within the framework of
multy-body systems (MBS).

For conical wheel profiles and a wheel-setl as basic elernent of the description
this approach turned out to be a good compromise between accuracy and
efficiency. However, for more realistic profiles and a single wheel as basic
element, we encounter practical as well as theoretical difficulties.

"The paper was presented during the First Workshop on Regularization Methods in Me-
chanics and Thermodynamics, Warsaw, April 27-28, 1995
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Both are due to lacking regularity. The standard profiles of rails and
wheels are defined piecewise as polynomials and arcs of circles. They are
differentiable, but only once. This affects, of course, the performance of all
solvers for the resulting ordinary differential equations or for the algebraic-
differential systems.

But worse. the curvatures of realistic wheels are made to fit the rails (on the
tread) and to confine the lateral motion (flange). This entails a discontinuous
dependence of the geometrical contact point between both bodies on their
relative placement. As a consequence, the manifold of admissible placements
is nonsmooth. Moreover, the jumps of the geometrical contact point result
in discontinuous changes in geometrical parameters appearing in the friction
law. thus accounting for discontinuous forces.

It is easilyv seen that a dynamical problem on a non-differentiable constraint
manifold has in general no classical solution, and there is no unique way of
defining generalized (weak) solutions. On the other hand, for a deformable
body, say an elastic one, with a given local friction law on the boundary, we
expect unique solvability. Of course, that elastic solution depends on material
constants which are not present on the rigid body level of modelling.

The aim of the present paper is to determine approximately the rigid body
components of the elastic solution without accept calculating this latter solu-
tion. To this end we exploit the idea that due to the elastic deformations the
elastic solution yields differentiable generalized velocities for the rigid body
components. However, because of the large values of the elasticity constants.
the elastic trajectories remain within a very small neighborhood of the admis-
sible manifold for the rigid body motion. Hence we substitute for the original
manifold a rneighboring smooth (regularized) manifold. We prove, that this
procedure leads in the limit to a unique generalized solution within a certain
class of regularization methods. Moreover, in some special cases we charac-
terize the generalized solutions by jump conditions for the velocities. This
allows us to calculate numerical solutions very effectively by solving a sequ-
ence of smooth initial value problems.

2. Kinematics

Let us introduce the following notations
R - ral, RCE=R?
W~ wheel. WCIE
W, - rail at the time ¢, W, C IE
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x - position of particle X, x: W —=1IE, X — 2 =k(X)
L - set of all placements
t - motion, t— Kk, € K.

By definition we have
W = k(W)

Now, our approach is based on the following six assumptions.
Postulate 1. The rail is motionless.
Postulate 2. The wheel is rigid.

Hence. the actual position of a particle is given by
2(X,1) = m X) = s(1) + QU)X — Xo)

wlere
s — translation of the particle Xg, s = s(1) € It

@ - rotation, @ = @Q(1) € SO(IE).

Hence the space of all placementq K is parametrized by a set of six num-
bers y € Y = IR®

Ky = K“y(t) y(t) = [51,52,53#@,'%0]—'—

For the velocity vector it holds
o(X,1) = 2 2(X,1) = 5(1) + Q)X — Xo) = 5(1) + w x (X — Xo)

with .
§€iijkj

Postulate 3. Rail and wheel do not penetrate each other

= w(p,¥,0,9,1,0) wi =

Vi ointW,NintR = 0
Postulate 4. There is a continuous contacl between rail and wheel

Vi W,NnR#0

Postulate 5. Vi the set W, NR is finite.
Practically WNR={z.} or W,NR = {z.2.}

We denote by z.,z.,... the geometrical contact points.
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Definition 1. Let W, = k,(W). The set
M={yeY:0#W,NRCW,NIR}
is called the admissible manifold.

We introduce the multi-valued {unction

X, : M — 2°% contact point (or set of contact points)
y— {2l 1=1,..} CIR,

which assigns the set of all geometrical contact points to a given configuration.
Now, the main problem is that M is not smooth, i.e., it is a CY, but not
C'1-manifold.
In general, it holds

Xy)>1=74 T,M

Thus, we define the singular manifold 5 C M as follows:
Definition 2. § = {ye M : |Xc(y)| > 1}.

There are two different reasons for the existence of singularities of the above
type. First, real wheels have a flange (for theoretical purposes, sometimes
conical wheels are considered), and hence the contact point can change from
the tread to the flange and back. Secondly, since the wheel is designed to fit
to the rail in the tread region, the distance function takes very small values
in the neighborhood of the actual contact point, and is not globally convex.
Thus small changes in the position y can cause sudden changes of the contact
point, even within the tread. However, this second type of singularities is
connected with small changes of the tangent direction.

For application to railway dynamics, the vertical direction is distinguished
in the sense that we usually have

M = {y €Y s3= ma,x{hl(sl,SQ,p,’d>), [ = 1}}

with 2l € C' (I = 1,2,...). Indeed, for our main application, the geometry
is as follows
R = {_X cR?: X5< r(XQ)}
r:[-0.03716,0.03716] — IR
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— rail profile, e.g., UIC60-ORE, usually rotated around X;-axis

W = {x eR®: X7+ X5 <05+ w(Xz)]Q}
w: [-0.07,0.06] — R
— wheel profile, e.g., 51002
= M= {y € R : s3 = h(s,.p. L{w)}
Note that s; and @ are cyclical coordinates, hence
52
M = M x R? M = zj' € R : s3 = h(sy, 0,)

P

For visualization we often use the 1-cuts ﬁ/jw

Hw = s3 | €IR?: 553 = hise, 0. 1)

3. Smoothing concepts

11

In this section we discuss several concepts for the smooth approximation
of the nonsmooth admissible manifold M. Such concepts are required both
for practical reasons (computational speed) and theoretical reasons (for the

well-posed initial value problem to be dealt with).
There are three major variants we employ:

— Splines
— Softabs - b ) b )
a+ a— a+ sabs(a — 0
max{a,b} = 5 + 5 T 3 + 5
e.g., with
2 ¢
sabs(a) = sabs(a,v) = — / arctan = d¢
T v
0

We have: sabs(a,r) — |a| with v — 0.
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— Penetration
Postulate 3°. V&t mes(W,N7R) = ¢ = const

In all of the three approaches we are confronted with the following question:
Is there a limit of the corresponding solutions to the equations of motion?

Here we use the following form of the equations of motion for a smooth
manifold M (Euler-Lagrange equations)

m(y)i = f(t.y, 9. 2\) + Ait A>0  yeMcCR®
0=yg(y) = s3 — hls2, 9. ¥)

with the vector normal to M in y

31

it
<
(5

[l

—hy
0

(normalized if necessary) and the mass matrix m € Sym™*(IR®).

If M is not differentiable in y the balance of momentum takes the form

0+ ot
(it — ) = /f(i,y,y,/\)dt+ /Aﬁdt
i o

Here are
A — Dirac-function-type distribution
7. — jump function.

The product on the right-hand side of the above equation is not well defined
(cf Schwartz (1950); Volpert (1967)). There is a variety of jump conditions
which are compatible with the impulse conversation:

(a) Ideal plastic impact (without friction, [ fdt =0, [Addt = Adt)

gt =g+ Am Nyt

y—nt

._+. _ . —_
— = =y - —=—————m'7
(m~lit+, fqt) Y Y

yrat =0 = A=



ON A NUMERICAL SOLUTION OF RAIL-WHEEL CONTACT PROBLEMS 13

(b) Regularization (with friction)

7t = lim i t;
y o Ulg})y( V)

where y(-;v) - solution on the smoothed (with parameter v, correspon-
ding to € in other papers) admissible manifold and initial velocity 7~

(¢) Generally
gt =y  +m '@ neP,M

where P,M - polar cone at y.

Thus we assume:

Postulate 6. At all regular points of M the Euler-Lagrange equations apply.
at all singular points there is given a mapping

(loy i) — gt

4. A test case

Let M =c¢ beacurvein [RQ, m = Ipya, v:i=|Yy
iy =7(y1)
and v: IR — IR piecewise smooth, i.e.,
— v smooth in {—00,0)U (0, +0)

— ' jumps at y, = 0.

Let o = arctan(y’") — arctan(y’").
Due to the concept of plastic impact (a) it holds
: —t +

gt =97 — v sinan vt = cosav™

On the other hand, the regularization technique (b) yields

vt = vTe T

where p is Coulomb’s coefficient for dry friction and

(
F = ‘“#,Fn,m
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The latter is preferable since it includes the effect of friction and, fur-
thermore. is more stable. In fact. it is not affected by a misinterpretation of
a change in direction during the course of the numerical integration of the

equations of motion.
It is worthwhile to mention that the above result can be generalized to

cover the multidimensional case. For vanishing forces we have:

Lemma 1. Fach solution to the equations of motion is contained in a geodetic
fine of the admussible manifold M.

Furthermore, in the presence of Coulomb friction the following lemma
holds:

Lemma 2. The solution to the equations of motion is a superposition of a
monotonous rescaling of the time-scale and the solution for the non-
frictional case.

Now, let & be a plane curve, M = éxIR% and ¢ a trajectory in M. Then

= , 5
k = kcos? 3 J = arccos —
s
where
s — arclength on ¢ k curvature of ¢
5 - arclength on ¢ k — curvature of ¢.

Theorem 1. The kinetic energy after the "wedge” is obtained from

TT = exp(=2p&cos 3)T~

However, for these results it is essential that the friction law is isotropic,
and that there is no deviatoric part of the mass matrix.

A realistic description, however, requires the solution to (at least) a quasi-
stationary variational inequality. For the sake of computational speed, there
are several approaches to the decoupling of a normal and tangential problems.
Finally, a local contact zone around the geometrical contact point is determined
and divided into a slip and a stick region, respectivelv. Only in the slip region
Coulomb’s law holds as an equality, hence in macroscopic terms the friction
law differs from that considered for the test case. Furthermove, due to the
shape of the contact zone (which depends on the local geometry around the
contact point), there is also an anisotropy effect.

A numerical solution to the equations of motion and the regularization
concept (b) is shown below. Here we adopted data for a wheelset following
Kaas-Peterson (1986), Netter and Arnold (1993), Frischmuth et al. (1994).
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Rozwiazanie numeryczne zagadnient styku koto-szyna

Streszczenie

Zakladamy, ze zaréwno kolo, jak i szyna sa cialami meodksztalcalnymi. Ruch

opisany jest 6 zmiennymi. Zakladamy istnienie przynajmniej jednego punktu styku
w kazdej chwili czasu, wprowadzajac w ten sposéb niegladka rozmaitosé¢ wiezéw. Ba-
damy warunki skoku przy przejsciu trajektorii przez osobliwosci, opierajac sie na re-
gularyzacji geometrycznej. Przedstawiono wyniki numeryczne otrzymane dla zestawu
kolowego.
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