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In this study, the solution to the free vibration problem of axially graded beams with a
non-uniform cross-section has been presented. The proposed approach relies on replacing
functions characterizing functionally graded beams by piecewise exponential functions. The
frequency equation has been derived for axially graded beams divided into an arbitrary
number of subintervals. Numerical examples show the influence of the parameters of the
functionally graded beams on the free vibration frequencies for different boundary conditions.
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1. Introduction

Functionally graded materials (FGMs) are a novel class of composites which have continuous
variation of material properties from one constituent to another. As a result, they have various
advantages over the classical composite laminates. For example, using FGMs, we avoid stress
concentrations typical for heterogeneous structures with jump a discontinuity between dissimilar
materials. For this reason, FGMs are widely used in mechanical, nuclear, aerospace, biomedical
and civil engineering. Simultaneously, because of wide applications of FGMs, it is very important
to study static and dynamic analysis of functionally graded structures, such as plates, shells and
beams. In this paper, the object of consideration is the problem of free vibration of functionally
graded (FG) beams. For FG beams, the gradient variation may be oriented in the axial and/or
in the cross-section direction.

The literature on vibration analysis of FG beams with thickness-wise gradient variation is
very extensive. For example, Anandrao et al. (2012) made free vibration analysis of functionally
graded beams using the principle of virtual work to obtain a finite element system of equations.
The variation of material properties across the thickness of the beam was governed by a power
law distribution. The same type of variation of the beam properties was also assumed by Sina et
al. (2009). They solved the resulting system of ordinary differential equations of free vibration
analysis by using an exact method. An analytical solution to study free vibration of exponential
functionally graded beams with a single delamination was developed by Liu and Shu (2014).
Pradhan and Chakraverty (2013) used the Rayleigh-Ritz model to analyse free vibration of FG
beams with material properties that continuously vary in the thickness direction according to
the power-law exponent form. This type of gradation was also assumed by Wattanasakulpong
and Ungbhakorn (2012). They applied the differential transformation method to solve the go-
verning equation of free vibration of FG beams supported by various types of general boundary
conditions. The line spring model to solve the free vibration problem of an exponentially graded
cracked beam was employed by Matbuly et al. (2009).

Free vibration analysis for axially graded beams has become more complicated because of
the governing equation with variable coefficients. For example, Wu et al. (2005) applied the
semi-inverse method to find solutions to the dynamic equation of axially functionally graded
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simply supported beams. Huang and Li (2010) studied free vibration of axially functionally
graded beams by using the Fredholm integral equations. Hein and Feklistova (2011) applied
the Haar wavelet approach to analyse free vibration of axially functionally graded beams. The
differential transform element method and differential quadrature element method of the lowest
order were used to solve free vibration and stability problems of FG beams by Shahba and
Rajasekaran (2012). The exact solution to free vibration of exponentially axially graded beams
was presented by Li et al. (2013). Explicit frequency equations of free vibration of exponentially
FG Timoshenko beams were derived by Tang et al. (2014). Huang et al. (2013) presented a
new approach to the investigation of free vibration of axially functionally graded Timoshenko
beams. By applying auxiliary functions, they transformed the coupled governing equations into
a single governing equation. Moreover, there are some studies related with the problem of free
vibration of FG beams where the gradation of the material is assumed to be along any of the
possible Cartesian coordinates, see Alshorbagy et al. (2011), by Shahba et al. (2013). A review
of researches on FG beam type structures can be found in Chauhan and Khan (2014).

In this contribution, we propose a new approach to free vibration analysis of FG beams with
arbitrary axial inhomogeneity. The main idea presented in this paper is to approximate an FG
beam by an equivalent beam with piece-wise exponentially varying material and geometrical
properties. Considerations are carried out in the framework of the Euler-Bernoulli beam theory.
Taking into account various boundary conditions associated with clamped, pinned and free
ends, numerical solutions are obtained for different functions describing gradient variation of
material /geometrical properties of an FG beam. The effectiveness of the proposed approach is
confirmed by comparing the obtained numerical results with other numerical solutions available
in the existing literature for homogeneous and nonhomogeneous beams. The proposed method
is a certain generalization of the approach presented by Kukla and Rychlewska (2014).

2. Equations of motion

An axially graded and non-uniform beam of length L is considered. In this contribution, the
material properties and/or cross-section of the beam are assumed to vary continuously along
the axial direction. Based on the Euler-Bernoulli beam theory, Lebed and Karnovsky (2000),
the governing differential equation is given by

2 zw 2w
% [E(x)f(fﬂ)g?} + p(w)A(w)%? =0 O<z<lL (2.1)

where x is the axial coordinate, A(x) is the cross-section area, I(x) is the moment of inertia,
E(x) denotes the modulus of elasticity, p(z) is the material density and w(z,t) is the transverse
deflection at the position x and time ¢.

In order to investigate free vibration of the beam, we assume that

w(z,t) = W(z)sinwt (2.2)

where W (z) is the amplitude of vibration and w is the circular frequency of vibration. Substitu-
ting (2.2) into (2.1) and introducing the non-dimensional coordinate £ = x/L, we can transform
governing equation (2.1) into

2 2
SO0 - tnoaew 0 o<e< (2.3

In the subsequent analysis, it is assumed that

E(©I(8) = dog(§) p(§)A(E) = moh(§) 0<€&<1 (2.4)
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where dy = E(0)I(0) and mg = p(0)A(0). Subsequently, we shall approximate the FG beam
under consideration by an equivalent beam with piecewise exponentially varying geometrical
and material properties, setting

g(&) = dje*Pi€ h(€) = me®Pis Ci1<E<& i=1,....n (2.5)
where £, = 0 and &, = 1. The coefficients d;, m;, B;, i = 1,...,n we determine by using the
following relationships (i = 1,...,n)

9(&i—1) = die®5i 9(&) = die®% 9(&) =1 (2.6)
and (i=1,...,n)

i T+ &i— Ny
p(EE) = mie e b =1 (2.1
Hence (i =1,...,n)
1 9(&i) —28;&;
Bi= n d; = g(&)e s
2(& — &i—1)  9(&i-1) (2.8)

m; = h(fZ +2€i*1 )e*ﬁi(fﬂrfi—l)

We shall also assume that the transverse deflection of the beam has the form

W (&) = W;(§) L1 <E<§ 1=1,...,n (2.9)
Hence, the governing system of equations for such a piecewise beam can be expressed by

d? op.¢ A*W; , i1 < €<

il o282 el 4 2 2B, — i-1 i

e {dodle 5 } LAw?mom; e €W, = 0 . (2.10)
Introducing denotations

momi .4 9 o mdy

22 =27 2 — 2.11
equations (2.10) can be rewritten as

d? 1 o5 d*W;

2| a2B:€ vl 02,,2:28:8 . — . ) -

d£2[e d§2} Q%228 = 0 G <E<& i=1,....n (2.12)
After some manipulations. equations (2.12) reduce to the form

d'w; d°W; o Wi 2 2 §im1 <E<&

The parameters ; in equations (2.8) have been determined from the function g(-) corre-
sponding to the stiffness of the beam. These parameters can be determined also by using the
function h(-) corresponding to mass of the beam. In this case, we assume that

h(&im1) = mye?itit h(&) = me* h(&) =1 i=1....n (2.14)
and

g(fi +2§H) — dePiletein) g(&) =1 i=1,....n (2.15)

Then we have

1 h(&i) —26;¢;
2 — 1 i — h i 1S
’ 26— &) WD) = e (2.16)
d; = g<7§i +2£i*1)e*ﬁi(5i+5i*1) i=1,...,n

Differential equation (2.13) is valid also for d;, m;, (;, given by formulae (2.16).
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3. Solution to the free vibration problem
On the assumption 32 < p;§2, the general solution to equations (2.13) has the form

Wi (&) = e_ﬁig(Ai cos 8;€ + By sin §;¢ + C; cosh 6;€ + D; sinh §;€) i1 <&E<&G (31

where 6i:\/ﬂi9_ﬁgagi:\/ﬂi9+ﬂi2’ Ai,Bi,Ci,D; € Ryi=1,...,n.

In order to analyse the free vibration of functionally graded beams, solution (3.1) has to be
applied to certain boundary conditions. In this paper we shall consider the following types of
boundary conditions:

— clamped-clamped beam (C-C)

_ awy o B AWy
Wi(0)=0 d—f(o) =0 W,(1)=0 3 (1)=0 (3.2)
— pinned-pinned beam (P-P)
o d2W1 - _ dQWn
-0 THo-0  wm-o  TE (33
— clamped-pinned beam (C-P)
dWy d*w,
Wi(0)=0 d—g(O) =0 W,(1)=0 i (1)y=0 (3.4)
— pinned-clamped beam (P-C)
_ EWy o B aw,
Wi(0)=0 e (0)=0 W,(1)=0 T3 (1)=0 (3.5)
— clamped-free beam (C-F)
dW, a>W, d d*W,,
W1(0) =0 —@?m)zo e (1)=0 Eg@msdg XU 0 (3.6
— free-clamped beam (F-C)
2wy d ( oped®Wiy - AW,
7 0 =0 %(e T@Tym_x) W,(1) =0 =0 @

The matching conditions between two connecting elements of the piecewise beams satisfy
the following continuity conditions

awi . dWin

Wi(&) = Wig1(&) (&)= (&)

: : i T (33)
Wi, Wi, Pwi o PWi . B '
d€2 (51) - d€2 (é.l) d£3 (é.l) - d£3 (é.l) 1= 17 R 1

Substituting functions (3.1) into one of the set of boundary conditions (3.2)-(3.7) and continuity
conditions given by equations (3.8), we obtain a system of 4n equations which can be written in
the matrix form

AW)X =0 (3.9)
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where X = [Ay, By,C1, D1, ..., Ap, Bp,Cy, Dy]T and A(w) = [akj]anxan- The matrix A can be
expressed as

Aw)=| . (3.10)

4 4nxdn

where the matrices By, B,, of size (2 x 4n) represent the boundary conditions and matrices C;,
i=1,...,n— 1 of size (4 x 4n) represent the continuity conditions. The matrices associated
with the boundary conditions corresponding to the four kinds of end supports can be written as
follows:

— clamped-clamped beams

B, — 1 0 1 0 0 -0
! -6 6 B 61 0 --- 0
B — 0 --- 0 cosd, sin o, coshd,, sinhd,,
" 0 -+ 0 aunan—3 Qanan—2 Gandn—1 Q4nan -
where
Q4n 4n—3 = —[p €OS O, — Oy SiN Iy,
Q4n dn—2 = — B sin d,, + 0, cos oy, (3 12)
(4 an—1 = — [y cosh Opn + 0, sinh 6, '
Q4n4n = —[Pp sinh 0p + 0y, cosh 6y,
— pinned-pinned beams
1 0 1 0 0o --- 0
Bi =1, 2 2, 52 =
Bi =01 —26101 Bi+06; 26100 0 --- Of, . (3.13)
B — 0 --- 0 cosd, sin 6, coshd, sinhd, .
" 0O -+ 0 G4ndan—3 A4ndn—2 QA4ndn—1  Qdndn Ixdn
where
Q4n dn—3 = 23,0, 8in 0, + (ﬁ?z - 5721) Cos Op,
Qdn an—2 = —2By,0p, COS Oy, + (@21 — 5721) sin oy, (314)
Qdn dn—1 = —203,0,, sinh §,, + (ﬁg + Si) cosh 9, .
i an = —2B0, cosh 8, + (B2 + 0) sinh 5,
— free-clamped beams
_2 —_
| BE-4E —2(3101 87 + 6, —2p161 0 -+ 0 315
L= 143 2 2 3 43 =2 25 | 73 (3.15)
Bt + P10y —Pior — 07 B — Bidy —Bior+0y 0 -0 O],

the matrix B, is given by (3.11)2
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— clamped-free beams
the matrix By is given by (3.11);

0O --- 0 au _ _ A4p— _ A4p— — Q4n—
B, — dn—14n—3 Q4n—14n—2 Gdn—14n—1 Gdn—14n (3.16)

0 -+ 0 aunan—3 (4n,4n—2 (4n, 4n—1 (4n,4n
2x4n

where

Adn—1,4n—3 = 20p0y siné,, + (32 — 62) cos by,
Qan—1,4n—2 = —2[p0p COS Oy, + (32 — 6%)sind,
Q4n—1,4n—1 = —20p0p sinh &,, + (32 + Si) cosh 9,
Agn—1,4n = —203,0,, cosh §,, + (ﬂg + Si) sinh d,,
Aanan—3 = (820, + 62)sin by, + (B2 + B,02) cos by,
Qanan—2 = —(B20, + 03) cos &, + (B2 + B,62) sin g,
Qanan—1 = (—B28, + 0) sinh 3, + (82 — 3,0.,) cosh 3,
Qanan = (—B26, + 52)cosh &, + (8% — B,0.)sinh 3,

(3.17)

For clamped-pinned and pinned-clamped beams, the matrices By, B,, are given by equations
(3.11);-(3.13)2 and (3.13)1-(3.11)2, respectively. The matrices associated with the continuity
conditions are represented by

0 -+ 0 agi-14-3 -+ @gi-14ita 0 --- 0
0 - 0 QAi Li QAai A; 0 -0
C, = 44,41—3 41,4i+4 =1, n—1 (318)
0 -+ 0 asit14i-3 -+ Gaiy14i44 0 -+ 0
0 - 0 agiy24i-3 -+ a4iy24i+4 0 -+ 0 4dx4n

The non-zero elements of these matrices are given in Appendix.
The determinant of the matrix A has to vanish for a non-trivial solution of equation (3.9)
to exist. The frequency equation

det A(w) =0 (3.19)

is then solved numerically using an approximate method.

4. Numerical results

The numerical computations have been carried out for an FG beam which was divided into n
segments of the same length. The functions ¢(-), h(-) introduced into equations (2.4) are assumed
in the form g(§) = (1+~&)%, h(§) = 1+~€. In the computations, the formulae given by equation
(2.8) have been used. The first three non-dimensional free vibration frequencies obtained in the
present study for n = 100 are listed in Tables 1 and 2 in comparison with those presented by
Huang and Li (2010) and calculated by using a power series expansion. From Tables 1-2, it can
be seen that the present results are in good agreement with the existing results. For v = 0, we
have the case of a homogeneous beam. It is seen in Tables 1 and 2 that in this case the agreement
is excellent.
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Table 1. The first three non-dimensional free vibration frequencies for g(§)
h(§) =1 + ~¢, clamped-clamped beam

‘ ~ ‘ Power series method | Huang and Li (2010) ‘ Present study ‘

—-0.1 21.2409777868 21.24097778688 21.242905
58.5500545739 58.55005461550 58.567526
114.780241659 114.78027750905 114.824704

0 22.3732854478 22.37328544806 22.373285
61.6728228676 61.67282294761 61.672823
120.903391727 120.90340027002 120.903392

0.1 23.4796072481 23.47960724845 23.460013
64.7210676329 64.72106768601 64.678046
126.878016311 126.87805071630 126.802905

0.2 24.5634175322 24.5634175326 24.508817
67.7047553171 67.7047553184 67.596273
132.723976757 132.7240684027 132.546612

Table 2. The first three non-dimensional free vibration frequencies for g¢(&)
h(§) =1 + ~¢, clamped-pinned beam

‘ vy ‘ Power series method | Huang and Li (2010) ‘ Present study ‘

-0.1 14.8488960557 14.84889605539 14.844562
47.6370371901 47.63703719174 47.647237
99.171635183 99.17165323722 99.206918

0 15.4182057169 15.41820571698 15.418206
49.964862032 49.96486203816 49.964862
104.247696458 104.24770194514 104.247696

0.1 15.968709884 15.96870988416 15.950015
52.2372268871 52.23722689317 52.198883
109.202352455 109.20235370558 109.134912

0.2 16.5028988943 16.50289889399 16.445277
54.4614625302 54.46146253076 54.360368
114.051623344 114.05163085534 113.888586

The effects of parameters «, v and the number of segments n on the first three non-
dimensional frequencies for different boundary conditions are presented in Tables 3-5. It can
be observed that an increase in the value of the parameter « causes an increase in the difference

between the results obtained for n =5, n = 10 and n = 20, respectively.

Figure 1 presents the first free vibration frequencies calculated for the functions
g(&) = (1 +~48)* and h(§) = 1+~ for « = 1, a = 2 and a = 3. The calculations have
been performed for six types of boundary conditions. It can be noticed that variation of the
parameter v has a significant effect on the free vibration frequency. For the clamped-free beams,
the greatest impact of the parameter v occurs for @ = 1, and for all the other boundary condi-
tions under considerations it is for a« = 3. For the clamped-clamped and pinned-pinned beams,

(1 + 7€),

(1 + 7€),

the differences between the values of free vibration frequencies for o = 1 are negligible.
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Table 3. The first non-dimensional free vibration frequency for different boundary conditions,
9(§) = 1+, h(§) =1+7¢

a=1 a=2 a=3

y=-05] v=05 [y=-05] v=05 [ y=-05] y=05

C-C| 5 | 22.03982 | 22.264535 | 19.265636 | 24.165700 | 16.814251 | 26.214186
10 | 22.051059 | 22.262618 | 19.048822 | 24.459508 | 16.441212 | 26.863566
20 | 22.053796 | 22.261942 | 18.935593 | 24.609820 | 16.247100 | 27.197036
P-P| 5 | 9583045 | 9.773619 | 8.177437 | 10.524969 | 6.896407 | 11.294071
10 | 9.588353 | 9.772740 | 8.086959 | 10.653015 | 6.746380 | 11.574244
20 | 9.589777 | 9.772464 | 8.039484 | 10.718554 | 6.667729 | 11.718081
C-P| 5 | 15.838604 | 14.907051 | 14.080008 | 15.909067 | 12.483974 | 16.939622
10 | 15.845921 | 14.905829 | 13.922110 | 16.102144 | 12.209467 | 17.358429
20 | 15.847897 | 14.905405 | 13.839671 | 16.201108 | 12.066042 | 17.573873
P-C | 5 | 14.448440 | 15.749301 | 12.216596 | 17.289925 | 10.244436 | 18.957895
10 | 14.456396 | 15.747708 | 12.079634 | 17.500534 | 10.017769 | 19.429126
20 | 14.458368 | 15.747212 | 12.008080 | 17.608138 | 9.899795 | 19.670529
C-F| 5 | 4.379586 | 3.121248 | 4.321434 | 3.188805 | 4.234717 | 3.251220
10 | 4.380502 | 3.120991 | 4.252879 | 3.232930 | 4.103112 | 3.342365
20 | 4.380745 | 3.1209003 | 4.222757 | 3.254157 | 4.045646 | 3.386566
F-C | 5 | 2.887779 | 3.995266 | 2.290903 | 4.643804 | 1.807925 | 5.384977
10 | 2.889157 | 3.994728 | 2.270108 | 4.689088 | 1.774671 | 5.492166
20 | 2.889508 | 3.994563 | 2.257891 | 4.715110 | 1.755475 | 5.553767

BC n

Table 4. The second non-dimensional free vibration frequency for different boundary conditions,
9(§) = X+, h(§) =1 +7¢

a=1 a=2 a=3

y=-05] v=05 [y=-05] v=05 [ y=-05] y=05

C-C | 5 | 61.187699 | 61.527290 | 53.563835 | 66.810777 | 46.705060 | 72.453327
10 | 61.220229 | 61.522622 | 52.964685 | 67.624175 | 45.679608 | 74.250130
20 | 61.227661 | 61.520754 | 52.649784 | 68.039773 | 45.140471 | 75.171899
P-P | 5 | 39.248490 | 39.415763 | 34.281704 | 42.767233 | 29.772507 | 46.312345
10 | 39.265508 | 39.411680 | 33.896833 | 43.288075 | 29.121704 | 47.465112
20 | 39.270192 | 39.410436 | 33.695664 | 43.554164 | 28.779150 | 48.054717
C-P | 5 | 50.300388 | 49.461958 | 44.282315 | 53.482420 | 38.806190 | 57.735593
10 | 50.321872 | 49.457835 | 43.792788 | 54.127769 | 37.971984 | 59.156518
20 | 50.327702 | 49.456336 | 43.532945 | 54.460171 | 37.525512 | 59.890410
P-C | 5 |48.939014 | 50.267141 | 42.517999 | 54.777959 | 36.759687 | 59.599505
10 | 48.964462 | 50.262091 | 42.035739 | 55.451783 | 35.941623 | 61.097469
20 | 48.970497 | 50.260490 | 41.785685 | 55.792915 | 35.517228 | 61.857034
C-F | 5 | 23.381744 | 21.158807 | 21.233450 | 22.452525 | 19.191540 | 23.771357
10 | 23.393474 | 21.157385 | 20.890872 | 22.761849 | 18.565383 | 24.434588
20 | 23.396111 | 21.156800 | 20.740129 | 22.911071 | 18.295994 | 24.757241
F-C | 5 | 20476134 | 22.847483 | 17.187639 | 25.342189 | 14.317750 | 28.060961
10 | 20.488032 | 22.845673 | 17.036003 | 25.587931 | 14.064074 | 28.609593
20 | 20.490837 | 22.844949 | 16.945280 | 25.728924 | 13.914191 | 28.926634

BC n
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Table 5. The third non-dimensional free vibration frequency for different boundary conditions,

9(§) = (1 +9)% h(§) =1+~¢

sc | n a=1 oa=2 a=3
y=-05| y=05 | y=-05] 7=05 [y=-05] y=05
C-C| 5 |120.319511 | 120.746274 | 105.344423 | 131.127496 | 91.681928 | 142.145173
10 | 120.392769 | 120.740300 | 104.218260 | 132.739432 | 89.853340 | 145.728137
20 | 120.407372 | 120.736681 | 103.598604 | 133.555211 | 88.792805 | 147.537078
P-P| 5 | 88.504258 | 88.779880 | 77.531290 | 96.389774 | 67.426814 | 104.429449
10 | 88.629715 | 88.770369 | 76.684167 | 97.575681 | 66.023866 | 107.072172
20 | 88.639792 | 88.767515 | 76.229088 | 98.175746 | 65.248530 | 108.403315
C-P| 5 | 104.554645 | 103.740552 | 91.766692 | 112.472339 | 80.084560 | 121.703952
10 | 104.597719 | 103.733256 | 90.815730 | 113.815304 | 78.503258 | 124.685866
20 | 104.609566 | 103.730098 | 90.278366 | 114.513546 | 77.584066 | 126.231330
P-C| 5 |103.144606 | 104.556740 | 90.048791 | 113.706807 | 78.140870 | 123.417530
10 | 103.202283 | 104.546600 | 89.029672 | 115.147269 | 76.462403 | 126.629660
20 | 103.214761 | 104.543267 | 88.499082 | 115.856814 | 75.558342 | 128.206906
C-F| 5 | 62.982515 | 60.852831 | 56.140476 | 65.522940 | 49.819399 | 70.432539
10 | 63.020704 | 60.849312 | 55.256707 | 66.417417 | 48.227924 | 72.379515
20 | 63.028371 | 60.847560 | 54.856960 | 66.851872 | 47.524147 | 73.333012
F-C| 5 | 60.136355 | 62.488331 | 51.918494 | 68.523131 | 44.593816 | 75.023941
10 | 60.171203 | 62.485112 | 51.449765 | 69.200653 | 43.789492 | 76.516820
20 | 60.178811 | 62.483270 | 51.173617 | 69.581994 | 43.319244 | 77.363991

The presented numerical results have been obtained by using coefficients d;, m;, [;,
i =1,...,n, given by equations (2.8). Numerical computations show that the application of
equations (2.16) leads to results which are in good agreement with the obtained by using equ-
ations (2.8).

5. Conclusions

In the paper, a solution to the free vibration problem of axially functionally graded beams is
presented. An exact solution is derived for axially piece-wise exponential graded beams. The
frequency equation for beams with various combinations of clamped, pinned and free ends has
been obtained. In this approach, the distributed parameters which describe continuous axial
changes of the material properties of the beam are approximated by piecewise exponential func-
tions. The non-dimensional free vibration frequencies for a chosen function characterizing the
functionally graded beams have been numerically computed. An improvement of the accuracy
of the numerical results for a larger number of beam subsections applied in the method has
been demonstrated. A high agreement of the numerical results obtained by using the presented
method with the results obtained by using the power series method as well as with results gi-
ven by other authors has also been observed. The numerical investigation shows that the beam
stiffness distribution in the axial direction significantly effects free vibration frequencies of the
system.
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Fig. 1. The first non-dimensional free vibration frequency as a function of 4 for o = 1 (solid line),
a = 2 (dashed line), o = 3 (dotted line) for different boundary conditions

Appendix

Let us denote exi = €% (841 —0;), ¢i = cos(8;&;), si = sin(6;&;), chi = cosh(8;&;), shi = sinh(8;£;),
cil = cos(8;11&;), sil = sin(6;11&;), chil = cosh(8;41&;), shil = sinh(8;11&;).

The non-zero elements of the matrix C;, ¢ = 1,...,n — 1, which occur in equation (3.18) are
given by
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A4i—1,4i—-3 = ext - cl A45—1,4i—2 = ext - St A4i—14i—1 = exti - chi
a4i—1,4; = ext - shi agi—14i+1 = —cil a4i—1,4i+2 = —sil
a4i—1,4i+3 = —chil a4i—14i+4 = —shil

4,493 = —exi(fici + ;si) a4i,0i—2 = —exi(f;si — dici)

44 4i—1 = —exi(ﬁichi — Slshz) A44 47 = —exi(ﬁishi — Slchz)

agi i1 = Pig1cil 4 0i41811 a4; 4i42 = Pip18il — d;41cil

i gits = Biq1chil + 8;41shil i gita = Biy15hil — 6,4 1chil

agit1 4i—3 = exil(B7 — 67)ci + 2;6;5i]

4it1,4i—2 = exi[(B7 — 67)si — 2B;0;ci]

Qais14im1 = exil(B2 + 0, )chi — 20,8;shil

Qaisrai = exi[(B + 8;)shi — 20,8;chi]

i1 i1 = —2Bi410i418i1 + (=74 + 62,1 )cil

agiy1aive = 2Bip10ip1cil + (=07 + 074,)sil

Q4it1,4i+3 = 2Biv10i418hil — (87, + S?H)chil

Qtit1,4i+4 = 2Bi410i41¢hil — (B2, + 3?+1)5hi1

sioai-3 = —ewi(07 — 367)Bici + (36} — 67)disi]

agivo i = —exi[(B2 — 302)Bisi + (=382 + 62)d;ci]
Qgiro4i1 = —exi|(67 + 33?)@0}”' — (362 + 3?)3ishi]
asisos; = —exi[(B2 + 382 )Bishi — (362 + 6. )0:chi]
agiv2,4i41 = ( i2+1 - 35i2+1)5i+10i1 - (=3 z'2+1 + 5i2+1)5i+13i1
asivoive = (Bf1 — 30741) Birasil + (=307 + 0741)dipacil
Quip2,ai+3 = — (3021 + 01p1)0is18hil + (B2 + 38;41) Bigrchil

<=2 = . <=2 .
A4i12 4itd = —(3 i2+1 + 5i+1)5i+1ch21 + ( i2+1 + 3(5i+1)ﬁi+18h21
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